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Abstract: Augmented reality assisted assembly training (ARAAT) is an effective and affordable
technique for labor training in the automobile and electronic industry. In general, most tasks of
ARAAT are conducted by real-time hand operations. In this paper, we propose an algorithm of
dynamic gesture recognition and prediction that aims to evaluate the standard and achievement of
the hand operations for a given task in ARAAT. We consider that the given task can be decomposed
into a series of hand operations and furthermore each hand operation into several continuous actions.
Then, each action is related with a standard gesture based on the practical assembly task such that the
standard and achievement of the actions included in the operations can be identified and predicted
by the sequences of gestures instead of the performance throughout the whole task. Based on the
practical industrial assembly, we specified five typical tasks, three typical operations, and six standard
actions. We used Zernike moments combined histogram of oriented gradient and linear interpolation
motion trajectories to represent 2D static and 3D dynamic features of standard gestures, respectively,
and chose the directional pulse-coupled neural network as the classifier to recognize the gestures.
In addition, we defined an action unit to reduce the dimensions of features and computational cost.
During gesture recognition, we optimized the gesture boundaries iteratively by calculating the score
probability density distribution to reduce interferences of invalid gestures and improve precision.
The proposed algorithm was evaluated on four datasets and proved to increase recognition accuracy
and reduce the computational cost from the experimental results.

Keywords: augmented reality assisted assembly training; human-machine interaction; gesture
recognition and prediction

1. Introduction

Industrial assembly is performed by grouping individual parts and fitting them
together to create the finished commodities with great additional value. Thus, assembly
is an important step to connect the manufacturing processes and the business processes.
In assembly, training is significant for technicians to improve the skills. Effective assembly
training can increase the efficiency and quality of assembly tasks to achieve more value.
Therefore, many businesses and researches have paid attention to assembly training [1].
In traditional assembly training, trainees need repeated practice to improve assembly skills,
which leads to high resource consumption. Furthermore, it is not easy to evaluate the
standard and achievement during the traditional assembly training operations. Nowadays,
these problems can be addressed by augmented reality (AR) technology.

AR is a novel human computer interaction (HCI) technique. AR can enable users to
experience the real world in which virtual objects and real objects coexist, and interact
with them in the real time. In the past two decades, AR application has been a trending re-
search topic in many areas, such as education, entertainment, medicine, and industry [2,3].
Volkswagen intended to use AR to compare the calculated crash test imagery with the
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actual case [4]. Fuchs et al. [5] developed an optical see-through augmentation for laparo-
scopic surgery which could simulate the view of the laparoscopes from small incisions.
Pokémon GO [6] enabled users to capture and battle with different virtual Pokémon in
a real environment by mobile phone. Liarokapis et al. [7] employed a screen-based AR
to assist engineering education based on the Construct3D tool. AR is capable of assist-
ing assembly training because of its low time costs and high effectiveness, which allows
trainees to conduct real-time assembly training tasks at any place or time with minimum
cost [8–11]. Furthermore, in an augmented environment, trainees can analyze the behaviors
and achievements according to virtual information and real feedback. From AR interaction,
trainees can obtain intuitive data to standardize their training operations.

Currently there are no commercial products for AR assisted assembly training (ARAAT),
thus many research works have focused on it. Early ARAAT studies mainly converged
on marker-based tools or gloves. Wang et al. [12] established an AR assembly workspace
which enabled trainees to assemble virtual objects by real marked tools. Valentini [13]
developed a system which allowed trainees to assemble the virtual components using
a glove with sensors. These methods can be accurate and intuitive, but come with the
high cost of the devices. Recently, benefiting from the rapid development of computer
vision, researchers are increasingly focused on the vision-based bare-hand ARAAT which
is natural and intuitive with the low costs of the vision cameras [14–16]. Most ARAAT
tasks are conducted by real-time hand operations. Trainees need to use their real hands to
operate virtual workpieces. Thus, precise gesture recognition plays an important role in the
bare-hand ARAAT, and also in evaluating the standard and achievement of training tasks.
Lee et al. [17] applied hand orientation estimation and collision recognition from trainees’
hands to virtual substances. They proposed a hand interaction technique that ensured a
seamless experience for trainees in the AR environment. Nevertheless, the precision of
Lee’s research depended on the range between trainees’ hands and stereo cameras. Thus,
calculation errors existed when only one finger was used and its application was limited.
Wang [18] proposed a Restricted Coulomb Energy network to segment hands for AR
empty-hand assembly. Virtual objects were controlled by two fingertips in the experiment
to simulate assembly tasks. Since algorithms of fingertip tracking were implemented in 2D
space without depth information, the results had lower recognition accuracy. Most current
studies on the bare-hand ARAAT have received a low recognition accuracy. Hence, more
effort has been made to raise the recognition precision. Choi [19] developed a hand-based
AR mobile phone interface by executing the “grasping” and “releasing” gestures with
virtual substances. The interface provided a natural interaction benefit from the hand
detection, palm pose estimation, and finger gesture recognition. Figueiredo et al. [20] evalu-
ated interactions on tabletop applications with virtual objects by hand tracking and gesture
recognition. During the interaction, they applied the “grasping” and “releasing” gestures
and used the Kinect device for hand tracking. These studies have increased the recognition
rate by various image processing methods, but the interaction gestures are confined to
few types of interaction gestures. Even though for the up-to-date AR device HoloLens
(1st Generation) [21] that is broadly used in numerous AR applications, the operation
gestures are also limited to only two gestures: “pointing” and “blooming”. Limited types
of interaction gestures are not only inadequate for practical industrial assembly tasks,
but also giving unnatural experiences to trainees. In ARAAT, giving a realistic and natural
experience in performing assembly tasks is also a significant issue as well as precise gesture
recognition [22–24]. Aside from inadequate gestures, a long response time will also bring
an unnatural interaction experience in ARAAT. Thus, many researches have focused on
early recognition by predicting or estimating gestures to reduce the response time and make
the process of assembly operations appear natural. Zhu et al. [25] proposed a progressive
filtering approach to predict ongoing human tasks to ensure a natural and friendly inter-
action. Du et al. [26] predicted gestures using improved particle filters to accomplish the
tasks of welding, painting, and stamping. With the help of additional physical properties
of 3D virtual objects, Imbert et al. [27] found a more natural approach to doing assembly
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tasks and the results showed that trainees could perform assembly tasks easily. There is
a problem that current studies for bare-hand ARAAT mostly focus on the single gesture
recognition rather than the whole assembly task evaluation. Compared with single gesture
recognition, the whole task evaluation can analyze the trainees’ operations overall and
is more helpful to trainees for improving their standard and achievement of operations.
However, the whole task evaluation remains a challenge because the whole assembly task
contains many different gestures together which are difficult to be distinguished. Directly
evaluating the performance of a whole ARAAT task is a complicated process because only
limited types of gestures for ARAAT can be recognized and recognition accuracy is not high.

Based on the related ARAAT studies mentioned thus far, ARAAT has the following
areas of improvement: (1) lack of the whole complex assembly task evaluation, (2) limi-
tation of interaction gestures, (3) low recognition accuracy, and (4) unnatural interaction
experiences resulting from long response time. With the aim of resolving these problems,
in this paper, we develop an ARAAT system. The flowchart of ARAAT is shown in Figure 1.
Trainees choose the ARAAT tasks and conduct the corresponding operations. The AR
device (HoloLens) records trainees’ gesture videos during the tasks and the multimodal
features are extracted from the videos. After classification, these multimodal features are
used for gesture segmentation and optimization. After recognition with the optimal gesture
boundaries, the gesture results will be used to evaluate the standard and achievement of
hand operations in ARAAT tasks. In ARAAT, we have made the following contributions:
(1) Building a model for the whole complex assembly task evaluation. We decompose an
ARAAT task into a series of hand operations. Each hand operation is further decomposed
into several continuous actions. Each action can be considered as an identifiable gesture.
Using the classification and sequences of gestures, we can easily distinguish actions and
predict operations to evaluate the performance of ARAAT tasks. (2) Increasing the types of
interaction gestures. We generalize three typical operations and six standard actions based
on practical industrial assembly tasks. (3) Improving the recognition accuracy. For eval-
uating the standard and achievement of hand operations in ARAAT tasks, an algorithm
for gesture recognition is proposed in this paper to improve recognition accuracy and effi-
ciency. The ARAAT task is recorded into an input video by an AR device. To ensure precise
interactions for trainees to work with virtual workpieces by real hands (empty hands or
using assembly kits), virtual workpieces must match correctly to hands or tools according
to spatial-temporal consistency. Based on the spatial-temporal consistency, we use Zernike
moments combined histogram of oriented gradient and linear interpolation motion trajec-
tories to simultaneously represent 2D static and 3D dynamic features, respectively. The
directional pulse-coupled neural network is chosen as the classifier to recognize gestures.
To reduce the computational cost, we define an action unit to reduce the dimensions of
features. The score probability density distribution is defined and applied to optimize
gesture boundaries iteratively to decrease the interference of invalid gestures during ges-
ture recognition. (4) Decreasing the response time. We proposed an action and operation
prediction method based on the standard operation order. The prediction method can
early recognize the action and operation to reduce the response time and ensure a natural
experience in ARAAT.

The subsequent sections of this paper are divided as follows: Section 2 describes the
modeling for ARAAT; Section 3 presents the action categories, action recognition, and oper-
ation prediction; Section 4 details the experimental results compared with other algorithms
on a homemade dataset and the experimental analysis; finally, Section 5 provides a short
conclusion and suggestions for future research.
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Figure 1. The framework of AR assisted assembly training (ARAAT) operation recognition. HoloLens
takes trainee’s gesture videos of corresponding ARAAT task operations and the multimodal features
are extracted from the gesture videos. After classification, the features are used for gesture segmenta-
tion and optimization. By the recognition with the optimal gesture boundaries, the gesture results
will be given to evaluate the standard and achievement of hand operations in ARAAT tasks.

2. Modeling for Augmented Reality Assisted Assembly Training

ARAAT tasks are mainly conducted by hand operations. Directly evaluating the per-
formance of a whole ARAAT task is a complicated process, so we evaluate the performance
of ARAAT tasks according to the standard and achievement of hand operations. For this
purpose, we consider that a task can be decomposed into a series of hand operations,
each of which can be decomposed into several continuous actions. Each action is related to
a standard gesture based on the practical assembly task. The model of ARAAT conducted
based on this decomposition is illustrated in Figure 2.

Figure 2. The model of Augmented Reality assisted assembly training.

Let T be a given assembly task and V be the recorded input video corresponding to T.
V can be expressed as a series of frames in digital images, that is,

V = { ft , t = 1, 2, . . .} (1)

where ft is the tth image frame.
For the convenience of formalizing T and the related definitions, we define a con-

catenation operator ⊕, where “f ⊕ g” means that f occurs just after g. This gives the
following definitions:

Definition 1. Let Oi be the ith operation of task T, and N be the number of operations in T. Then,

T =

{
Oi

∣∣∣∣O1 ⊕O2 ⊕ . . .⊕ON and
N
∩

i=1
Oi = ∅

}
(2)

Definition 2. Let Ai,j ⊂V be the jth action of ith operation Oi, Mi be the number of actions in Oi. Then,{
Oi =

{
Ai,j
∣∣Ai,1 ⊕ Ai,2 ⊕ . . .⊕ Ai,Mi

}
Ai,j =

{
f h
i,j, . . . , f e

i,j

∣∣∣ f h
i,j ⊕ . . .⊕ f e

i,j

} ,
i = 1, 2, . . . , N
j = 1, 2, . . . , Mi

(3)
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where f h
i,j and f e

i,j are the head frame and the end frame of Ai,j, respectively. We consider
that the end frame of an action is the head frame of the next action, that is,

f e
i,j = f h

i,j+1, i = 1, 2, . . . , N, j = 1, 2, . . . , Mi − 1 (4)

To evaluate the performance of the task T in ARAAT, it is necessary to clarify which
operations Oi are conducted for the task T. Operation recognition is the identification of the
corresponding sequences of actions {Ai,j}. To distinguish every action Ai,j for each Oi ∈ T,
we need to label all the frame ft of the input video V and recognize the gestures included
in the action Ai,j. This dynamic gesture recognition allows for the performance of tasks in
ARAAT to be evaluated.

3. Dynamic Gesture Recognition in Augmented Reality Assisted Assembly Training

The difficulty of dynamic gesture recognition in ARAAT lies with simultaneously
segmenting and labeling gestures of actions in an operation. One exhaustive method
of dynamic gesture recognition is to label all frames in the searching space, but this is
time-consuming when dealing with long gestures. Therefore, a more efficient dynamic
recognition algorithm is proposed in this section, consisting of three parts: action categories,
action recognition, and operation prediction.

3.1. Action Categories

According to the American Society of Mechanical Engineers (ASME) standard opera-
tions [28], there are five typical types of assembly tasks in practical industrial assembly:
“matching”, “conjugating”, “joining”, “fastening”, and “meshing”, as shown in Figure 3.
The essential operations for conducting these assembly tasks can be categorized into “in-
serting”, “fastening”, and “screwing”, presented in Figure 4. Based on these typical tasks
and operations, we conclude six basic actions [29]:

• “Rotating”: trainees can change the orientation of objects;
• “Moving”: the movement of an object or a tool;
• “Grasping”: trainees can gain an object or a tool;
• “Releasing”: trainees can put down an object or a tool;
• “Pointing”: the selection action of an option or a virtual workpiece in AR environment;
• “Scaling”: trainees can resize objects.

Figure 3. The types of typical assembly tasks: (a) matching, (b) conjugating, (c) joining, (d) fastening, and (e) meshing.

Figure 4. The types of typical assembly operations: (a) inserting, (b) fastening, and (c) screwing.

The actions are demonstrated in Figure 5:
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Figure 5. The types of standard actions for assembly: (a) rotating, (b) moving, (c) grasping and
releasing, (d) pointing, and (e) scaling.

In ARAAT, trainees usually complete assembly tasks with their hands and several
virtual tools, similar to practical industrial assembly. Thus, the above six standard actions
are also the basis in ARAAT. To evaluate the standard and achievement of assembly tasks,
we first need to recognize trainees’ gestures of basic actions.

Different from single action recognition, meaningless transition actions between im-
portant actions in practical assembly operation are unavoidable. The transition actions
make no sense and may impact negatively on the output in gesture recognition. To solve
the disturbance of transition actions, a “Null” action is added in the standard basic action
set, that is,

A = {Pointing, Moving, Grasping, Releasing, Scaling, Rotating, Null} (5)

3.2. Action Recognition

Action recognition mainly involves the following parts: feature extraction, gesture
classification, and boundary segmentation. The specific processing steps are outlined below.

3.2.1. Feature Extraction

The actions in ARAAT are all dynamic gestures with movements. It is difficult to
distinguish gestures with only 2D static features, so both static and dynamic features are
extracted simultaneously to provide greater accuracy of action recognition. The static
features are mainly the 2D representation characters of gestures and the dynamic features
are the trajectories of hand motions.

(1) Static Features

In this paper, Zernike moments [30] and histogram of oriented gradient (HOG) are
used to extract static features [31]. Zernike moments were first proposed by Frits Zernike
in 1934 to uniquely describe functions on the unit disk and were then extended to describe
images for feature extraction. Zernike moments have the properties of shift-invariant,
scale-invariant, and rotation-invariant, and are always used as descriptors for gestures.
Therefore, differently sized and shaped artifacts will not have a great influence on the
gesture recognition results. However, Zernike moments cannot achieve good results in
texture recognition. HOG is a feature descriptor for object detection in the static image that
counts occurrences of gradient orientation in localized portions of an image. Thus, HOG is
used to compensate for the recognition of local texture features in images.

For ∀ ft ∈ Ai,j ⊂ V, i = 1, 2, . . . , N, j = 1, 2, . . . , Mi, t = 2, 3, . . . , the static feature
matrix from f1 to ft can be defined as

FStatic
t =


f Static
1

f Static
2

...
f Static
t

 (6)

where f Static
t = (Znm

t , VHOG
t , f Type

t ) is the static feature vector of frame ft, Znm
t , VHOG

t and
f Type
t are Zernike moments, HOG feature vector and the gesture type, respectively.
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Before calculating Zernike moments, each frame must first be normalized. Let pt(xt, yt)
is a pixel of frame ft. m f and n f are the length and width of ft, and 0 ≤ x ≤ m f , 0 ≤ y ≤ n f .
Then, we conduct a mapping transformation of ft to a normalized polar image f ′t . We
define p′t(xt, yt) as the pixel of f ′t , where −n f /2 ≤ x, y ≤ n f /2. The Zernike moments of
order n with repetition m for gestures are calculated as follows,

Znm
t =

n + 1
π ∑

xt
∑
yt

p′t(xt, yt)Rnm∗
t (ρt)ejmθt (7)

θt = arctan(yt/xt) (8)

ρt =
√

xt2 + yt2 (9)

where n and m are nonnegative integers, m ≤ n and n − m is even. Rnm
t is a radial

polynomial and Rnm∗
t is the complex conjugate. ρt is polar value and θt is polar angle.

We define the gesture type f Type
t as the finger number used in each gesture, that is,

f Type
t =


1, i f performing gestures only using the index finger

2, i f performing gestures using both the thumb and index finger
5, i f performing gestures using all fingers

(10)

(2) Dynamic Features

In addition to the static representation of gestures, the dynamic motions of gestures
also need to be acquired.

We define p
(

xC
t , yC

t
)

as the centroid of hand in each frame ft ∈ Ai,j ⊂ V, i = 1, 2, . . . , N,
j = 1, 2, . . . , Mi, t = 2, 3, . . . . We construct two vectors by p

(
xC

t , yC
t
)
, namely

Xt =
(

xC
1 , xC

2 , . . . , xC
t
)

and Yt =
(
yC

1 , yC
2 , . . . , yC

t
)
. Considering that the range and speed

of movements vary from person to person, a mean operation is conducted for the shift
invariant and robustness of features. We obtain two new vectors X′t and Y′t ,

X′t =
(

xC
1 − X, xC

2 − X, . . . , xC
t − X

)
Y′t =

(
yC

1 −Y, yC
2 −Y, . . . , yC

t −Y
)

Xt =
1
t

t

∑
i=1

xC
i

Yt =
1
t

t

∑
i=1

yC
i (11)

where Xt and Yt are the mean values of Xt and Yt. The dynamic features then can be
presented by

FDyn
t =

[
X′t
Y′t

]
(12)

(3) Feature Matrix

In summary, for ∀ ft ∈ Ai,j ⊂ V, i = 1, 2, . . . , N, j = 1, 2, . . . , Mi, t = 2, 3, . . . , the feature
matrix Ft representing gestures from f1 to ft is expressed as:

Ft =

[ (
FStatic

t
)T

FDyn
t

]
(13)

3.2.2. Gesture Classification

We use the feature matrix Ft as the input of the classifier C and recognize the gestures.
In other words, classifier C can be seen as a mapping for ∀ ft ∈ Ai,j ⊂ V, i = 1, 2, . . . , N,
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j = 1, 2, . . . , Mi, t = 2, 3, . . .. By calculating the feature matrix Ft, we can obtain the
recognition result C( ft, Ft) ∈ A. The classifier C can be defined as:

C : ft × Ft → A (14)

In this paper, the directional pulse-coupled neural network (DPCNN) is chosen as the
classifier. The DPCNN can classify and recognize dynamic gestures by template matching
and is often applied to real-time applications, which is verified in our previous work [32].
The DPCNN can select the neuron firing directions by different excitations to reduce
computational complexity and time of traditional PCNN. The DPCNN can also improve
recognition accuracy by the choice of reasonable firing directions. For each gesture in
the standard basic action set A, that is, {Pointing, Moving, Grasping, Releasing, Scaling,
Rotating, Null}, we construct a single gesture video dataset that is used as a training
template to train parameters of the DPCNN classifier. We input the feature matrix Ft of
each single gesture into the DPCNN and then train the classifier.

To increase the efficiency of gesture recognition, an action unit is introduced in the
process of feature classification. We define L as the length of the action unit. An L that
is too small will lead to poor computational efficiency, while an L that is too large will
increase computational complexity. To determine the value of L, we collected assembly
gesture video data online and conducted an experimental statistical analysis. By trial and
error, we determined that L = 20 is the best length for the action unit. Because of the use
of the action unit, the dimension of features is reduced to 20 instead of all frames. For
∀ ft ∈ Ai,j ⊂ V, i = 1, 2, . . . , N, j = 1, 2, . . . , Mi, t = 20, 21, . . ., ft and 19 frames before ft
construct an action unit denoted by Ut, that is,

Ut = { ft−19, ft−18, . . . , ft| ft−19 ⊕ ft−18 ⊕ . . .⊕ ft−1 ⊕ ft} (15)

The multiple features of the action unit Ut are then gained by the feature extractor.
Based on the features, the classifier assigns each frame in the action unit Ut to the ap-
propriate action category and gives scores to each action category, which are shown in
Figure 6a. This reduces the computational cost and time, as well as the impact of video
length on complexity, allowing even long operation videos to be processed quickly and
efficiently. The scores then produce a unit probability distribution pU(A) for the action
class. The distribution suggests the probability of actions assigned to each class. As the
action unit moves forward along frames, the probability distribution p(A) on the whole
video can be produced, as illustrated in Figure 6b.

Figure 6. The output of the classifier. (a) Scores of each action in an action unit, and (b) the score distributions of each action
on an input video.
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3.2.3. Boundary Segmentation

As mentioned in Section 2, the operations of a task are constructed by actions, which
are performed by gestures. For accurate recognition of gestures, it is necessary to first
define the boundary of each action. In this section, we use density distribution optimization
to segment the action boundary.

Let p(A| ft) be the distribution of action class A on frame ft ∈ V. We define the
candidate boundary frame FCandidate (as seen in Figure 7),

FCandidate =
{

f h
k

∣∣∣k = 1, 2, . . .
}

(16)

where f h
k is kth candidate boundary frame and f h

k = fi satisfies
s.t = argmax p(A| fi−1) 6= argmax p(A| fi) , i = 20, 21, . . . , t.

Figure 7. The initial boundary points in the distribution of actions.

Then, we optimize the segmentation on the log density distribution logp
(

Ai,j
)

by
tuning ( f h

i,j, f e
i,j) with the candidate boundary frame FCandidate, that is,

argmax ∑
j

logp
(

Ai,j
)

s.t = Ai,j = f h
i,j ⊕ . . .⊕ f e

i,j (17)

Equation (17) is solved by dynamic programming and the optimal result of boundaries
f h
i,j ⊕ . . .⊕ f e

i,j is obtained. We propose a simplified algorithm which can search for the
optimal segment boundary in real time. The procedure of dynamic programming is shown
in Algorithm 1.

In Algorithm 1, we need to calculate maximal C f h
i,j ... fW

which is the optimal segmenta-

tion cost. The cost C f h
i,j ... fW

is calculated from the last action to the first one. In the search

range of each action, the cost C f h
i,j ... fW

is the sum of maximal log density distribution from

f h
i,j to f e

i,j and the cost from f e
i,j to the last frame fW . Bj records the segment boundary f e

i,j in
the optimal segmentation.

After each boundary optimization, we need to reduce the influence of invalid actions.
In a real assembly operation, each action usually lasts more than 60 frames. Thus, any
pair of f h

i,j and f e
i,j shorter than 10 frames in an operation is more likely to be an invalid

action and is removed. When the pair of f h
i,j and f e

i,j is more than 10 frames but shorter than
60 frames and is recognized to not be a transition action “Null”, the pair is merged to the
former segment. Then, we solve (17) again. The procedure is repeated until neighboring
f h
i,j and f e

i,j are appropriate and stable.
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Algorithm 1: Dynamic Programming for Optimal Boundary Segmentation

Input: boundary frames, (fh
i,j, fe

i,j); the number of actions, M; the search range of fh
i,j, αj; the

number of frames W
for j = M,M−1,. . . ,1
Cj = −∞, Bj = −∞;

for fh
i,j in αj

for fe
i,j in αj+1

Cfh
i,j⊕...⊕fW

= Cfe
i,j⊕...⊕fW

+ maxlogp
(

fh
i,j ⊕ . . .⊕ fe

i,j

)
;

if Cj < Cfh
i,j⊕...⊕fW

Cj = Cfh
i,j⊕...⊕fW

, Bj = fe
i,j;

end if
end for
end for
end for
Find (fh

i,j, fe
i,j) from Bj;

Output: The optimal boundary segmentation frames ( f h
i,j, f e

i,j);

The flowchart of boundary segmentation is shown in Figure 8 and the algorithm is
given below:

(1) Optimize the boundary by solving (17), go to (2).
(2) If the pair of f h

i,j and f e
i,j is shorter than 10 frames, remove the pair and go to (3). Else,

go to (3).
(3) If the pair of f h

i,j and f e
i,j is shorter than 60 frames, go to (4). Else, the optimized

boundaries are obtained.
(4) If the pair of f h

i,j and f e
i,j is a transition action, remove the pair and go to (1). Else,

merge the pair to the former segment and go to (1).

Figure 8. The algorithm of boundary segmentation.

3.3. Action and Operation Prediction

The purpose of ARAAT is to improve the standard for trainees by evaluating perfor-
mance of hand operations. Thus, the prediction of actions and operations is as necessary
as action recognition. The prediction algorithm can identify the assembly operations of
trainees early by recognizing actions and the judgement of current orders, allowing for the
evaluation of the standard order and achievement of the following actions.

In ARAAT, trainees are required to use their hands or various virtual equipment to com-
plete different assembly training tasks. As mentioned in Section 3.1, “inserting”, “fastening”,
and “screwing” are typical practical assembly operations. To conduct these training operations,
trainees need to hold some equipment as assistance, such as a wrench or screwdriver. By moving
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the workpieces with their hands, trainees can carry out the “inserting” operation; by rotating
the wrench, trainees can perform the “fastening” operation; by rotating the screwdriver, trainees
can perform the “screwing” operation. In ARAAT, trainees also need to complete the assembly
training through controlling the virtual workpiece by their hands or equipment.

Each assembly operation in ARAAT contains several actions in a standard order,
concluded as follows (refer to Figure 9):

Figure 9. The action orders of three typical operation “inserting”, “fastening”, and “screwing” in ARAAT.

Inserting: grasping (the workpieces)→ moving→ rotating/scaling→releasing (the
workpieces), that is,

Inserting = grasping⊕moving⊕ rotating/scaling⊕ releasing (18)

Fastening: grasping (the wrench)→moving→moving around→releasing (the wrench),
that is,

Fastening = grasping⊕moving⊕moving around⊕ releasing (19)

Screwing: grasping (the screwdriver)→moving→ rotating→ releasing (the screw-
driver), that is

Screwing = grasping⊕moving⊕ rotating⊕ releasing (20)

We can evaluate the performance of actions and operations by recognizing the gestures
and predicting the action order which the trainee is performing. Furthermore, when the
trainee carries out an operation in ARAAT, the virtual object needs to give the correspond-
ing reaction. If there is a delay in the reaction, the operation will not be smooth and the
interaction will be unnatural. In order to avoid inconsistencies with the operation, it is
necessary to predict the current and next actions and give the computer enough time to
make real-time feedback reactions. By the recognition of frames in the action unit, we can
predict the uncompleted actions and reduce the response time, providing trainees with a
smooth and natural human-machine interaction experience in ARAAT.

Based on the above discussion, the framework of action and operation prediction is
given in Figure 10.

Figure 10. Action and operation prediction in ARAAT.
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4. Experiments and Discussion
4.1. Experimental Design and Datasets

The experiments are divided into two sections to evaluate the proposed algorithm
in this paper. The first section is to validate the recognition accuracy and efficiency of
the proposed dynamic gesture recognition algorithm. We conduct the experiments on
4 datasets compared with other algorithms which contain 4 parts: frame recognition,
action recognition, action boundary segmentation, and the effect of image resolution on
recognition. The second section is to validate the effectiveness of proposed algorithm
for operation recognition and prediction and the reliability of proposed ARAAT system.
We invite participants to take real-time ARAAT tasks on HoloLens device to evaluate the
naturalness of interactions in ARAAT.

In the first section, the proposed algorithm for dynamic gesture recognition is eval-
uated on two public datasets (Sheffield Kinect Gesture (SKIG) dataset [33] and Sebastien
Marcel Dynamic Hand Posture Dataset [34]) and two homemade datasets (Assembly
Gesture Video Dataset and HoloLens ARAAT Dataset).

The SKIG Dataset was captured by a Kinect device that included a RGB camera and
a depth camera. It contains 10 gestures for Circle (clockwise), Triangle (anti-clockwise),
Up-Down, Right-Left, Wave, “Z”, Cross, Comehere, Turn-Around, and Pat. Six subjects
performed each gesture 18 times and there are 1080 RGB image sequences in total.

The Sebastien Marcel Dynamic Hand Posture Dataset contains 4 hand gestures: Clic,
Rotate, Stop-Grasp-Ok, and No. Each gesture in the dataset was performed 13–15 times
and recorded by image sequences.

The sample image frames of the SKIG Dataset and Sebastien Marcel Dynamic Hand
Posture Dataset are presented in Figures 11 and 12. These two datasets both comprise
common gestures which are not very relevant to assembly. Thus, we introduced two new
homemade datasets, called the Assembly Gesture Video Dataset and HoloLens ARAAT
Dataset, to validate our approach.

Figure 11. Image frames from SKIG Dataset.

Figure 12. Image frames from Sebastien Marcel Dynamic Hand Posture Dataset.



Appl. Sci. 2021, 11, 9789 13 of 21

The Assembly Gesture Video Dataset contains 437 assembly operation gesture video
sequences collected online from different uploaders on YouTube demonstrated in Figure 13.
The dataset has 6 standard assembly actions: “Pointing”, “Moving”, “Grasping”, “Releas-
ing”, “Scaling”, “Rotating”, and the transition action “Null”. These 6 standard actions were
generalized according to the ASME standard operations [28]. The resolution for each video
is 640 × 480.

Figure 13. Image frames from Assembly Gesture Video Dataset.

The HoloLens ARAAT Dataset is constructed from various action videos from HoloLens
RGB cameras. The videos of ARAAT tasks used in the experiments were captured by
HoloLens and the resolution of the image is 1028 × 720 with 30 frames per second (fps).
The dataset is divided into two parts: the single action dataset and the ARAAT task dataset.
The single action dataset contains 6 types of actions: “Pointing”, “Moving”, “Grasping”,
“Releasing”, “Scaling”, and “Rotating”. Videos were recorded of 30 participants, who
conducted the actions of real assembly operations based on the ASME standard opera-
tions. Each participant performed 6 actions 10 times each, which created 60 videos for
each participant and 1800 videos in total. Each video has approximately 100–150 frames.
The single action dataset is split into the training and testing sets. The ARAAT task dataset
was recorded by 30 participants and is used for testing sets in the boundary segmentation
experiments. Each trainee performed the ARAAT tasks, containing 6 types of actions:
“Pointing”, “Moving”, “Grasping”, “Releasing”, “Scaling”, and “Rotating”, in any order at
will for 10 times, producing 300 testing task videos.

4.2. Result of Action Recognition
4.2.1. Public Datasets

The results on the SKIG Dataset and Sebastien Marcel Dynamic Hand Posture Dataset
are presented in Tables 1 and 2, respectively.

Table 1. The recognition accuracy on SKIG Dataset.

Method Accuracy

RGGP + RGB-D 88.7 ± 1.3
4DCOV 93.8 ± 0.6

Depth Context 95.4 ± 2.1
HOG + LBP 97.3 ± 1.7

DLEH2 98.4 ± 1.0
Proposed 99.2 ± 0.7
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Table 2. The recognition accuracy on Sebastien Marcel Dynamic Hand Posture Dataset.

Method Accuracy

DCCA 65.5 ± 5.5
TCCA 82.1 ± 2.7

Product Manifolds 88.4 ± 3.4
Genetic Programming 85.0 ± 1.1

Tangent Bundles 91.7 ± 0.9
Cov3D 93.3 ± 1.2

Proposed 96.8 ± 0.4

On the SKIG Dataset, the proposed algorithm was compared with RGGP + RGB-D [33],
4DCOV [35], Depth Context [36], HOG + LBP [37], and DLEH2 (DLE + HOG2) [38] and
achieved state-of-the-art accuracy. The proposed algorithm was more attentive to the
spatial-temporal consistency of gestures during the process of feature learning, which was
not reflected in HOG + LBP and DLEH2. The comparison results confirm that spatial-
temporal consistency plays an important role in gesture recognition. On the Sebastien
Marcel Dynamic Hand Posture Dataset, the proposed algorithm was compared with Dis-
criminative Canonical Correlation Analysis (DCCA) [39], tensor canonical correlation anal-
ysis (TCCA) [40], Product Manifolds (PM) [41], Genetic Programming (GP) [42], Tangent
Bundles (TB) [43], and 3D Covariance spatio-temporal descriptor (Cov3D) [44]. As shown
in Table 2, the proposed algorithm outperforms the others by at least 3% in recognition
accuracy. Among the algorithms in Table 2, Cov3D produced a result second only to
the proposed algorithm because it learned the spatial-temporal features of the gestures
during the process. The result shown in Tables 1 and 2 is not as good as the proposed
algorithm in this paper because only dynamic spatial features cannot fully represent the
gestures. This further proves the importance of spatial-temporal consistency information
in gesture recognition.

4.2.2. Homemade Datasets

We also evaluated the proposed algorithm with the others on the homemade datasets.
Five-fold cross-validation was used in the experiments, which divided 80% of the data for
training and 20% for testing each time. Tables 3 and 4 show the accuracy of the proposed
algorithm on the Assembly Gesture Video Dataset and HoloLens ARAAT Dataset, respec-
tively. Tables 5 and 6 present the recognition results and processing time on the homemade
datasets compared with SSBoW [45], DSBoW [46], DTBoW [47,48], and DFW [49].

Table 3. The recognition accuracy on Assembly Gesture Video Dataset.

Action Pointing (%) Moving (%) Grasping (%) Releasing (%) Scaling (%) Rotating (%) Null (%)

Result

94.3 96.7 93.6 90.1 92.1 90.2 98.0
92.5 96.1 93.3 90.9 90.4 90.8 97.1
91.6 95.2 92.9 91.2 91.3 91.1 95.8
93.1 97.4 91.7 90.6 91.9 90.9 97.6
92.8 95.9 92.4 91.3 91.0 90.4 96.3

Average 92.9 ± 1.0 96.2 ± 0.7 92.8 ± 0.6 90.8 ± 0.2 91.3 ± 0.5 90.7 ± 0.1 97.0 ± 0.8

Table 4. The recognition accuracy on HoloLens ARAAT Dataset.

Action Pointing (%) Moving (%) Grasping (%) Releasing (%) Scaling (%) Rotating (%) Null (%)

Result

93.4 96.2 91.6 91.2 91.7 90.6 95.2
94.2 95.1 92.3 91.5 90.9 91.7 96.8
93.1 97.2 91.7 92.1 92.5 90.4 95.9
93.8 95.4 91.5 91.6 93.0 91.7 94.3
94.0 96.5 93.1 92.9 92.2 92.1 97.6

Average 93.7 ± 0.4 96.1 ± 0.7 92.0 ± 0.6 91.9 ± 0.6 92.1 ± 0.7 91.3 ± 0.7 96.0 ± 1.1
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Table 5. The recognition accuracy and processing time on Assembly Gesture Video Dataset with other algorithms.

Action Pointing (%) Moving (%) Grasping (%) Releasing (%) Scaling (%) Rotating (%) Null (%) Time (ms)

SSBoW 65.2 ± 13.5 81.7 ± 11.4 83.8 ± 12.1 88.2 ± 12.5 59.8 ± 18.8 76.5 ± 15.0 74.2 ± 20.7 1725.9
DSBoW 78.8 ± 10.3 83.8 ± 10.4 87.5 ± 7.2 86.1 ± 4.3 72.4 ± 10.9 81.7 ± 4.0 84.8 ± 19.1 1419.7
DTBoW 71.9 ± 11.5 91.4 ± 8.3 90.5 ± 3.6 86.7 ± 6.1 90.2 ± 4.7 87.6 ± 3.5 91.1 ± 9.2 1067.4

DFW 85.8 ± 6.2 94.0 ± 2.3 90.9 ± 7.8 88.3 ± 2.6 88.9 ± 3.4 85.1 ± 2.3 93.2 ± 5.8 893.1
Proposed 92.9 ± 1.0 96.2 ± 0.7 92.8 ± 0.6 90.8 ± 0.2 91.3 ± 0.5 90.7 ± 0.1 97.0 ± 0.8 524.3

Table 6. The recognition accuracy and processing time on HoloLens ARAAT Dataset with other algorithms.

Action Pointing (%) Moving (%) Grasping (%) Releasing (%) Scaling (%) Rotating (%) Null (%) Time (ms)

SSBoW 66.8 ± 10.1 83.3 ± 9.7 87.3 ± 10.9 89.6 ± 12.1 64.0 ± 20.2 80.1 ± 15.7 78.0 ± 22.6 2170.1
DSBoW 72.0 ± 12.1 89.7 ± 8.3 90.1 ± 4.1 90.3 ± 3.9 70.0 ± 12.7 82.4 ± 3.9 83.3 ± 15.6 1963.0
DTBoW 74.0 ± 10.4 94.2 ± 2.1 91.7 ± 2.0 90.9 ± 5.7 91.1 ± 2.6 88.6 ± 5.6 91.9 ± 8.8 1542.7

DFW 89.6 ± 3.2 93.7 ± 2.7 88.4 ± 5.1 86.1 ± 1.9 85.3 ± 2.8 87.7 ± 1.4 90.5 ± 6.0 1205.5
Proposed 93.7 ± 0.4 96.1 ± 0.7 92.0 ± 0.6 91.9 ± 0.6 92.1 ± 0.7 91.3 ± 0.7 96.0 ± 1.1 778.9

The recognition rates of the proposed algorithm for each action were all over 90%.
Outstanding performances of over 96% were achieved for several actions, such as “Moving”
and “Null”. The average accuracy of all actions was 93.1% and 93.3% for the Assembly Ges-
ture Video Dataset and HoloLens ARAAT Dataset, respectively. The results show that the
proposed algorithm can obtain the highest recognition accuracy across all algorithms from
the table. In particular, for “pointing” and “scaling”, the proposed algorithm outperforms
all the others by a margin that showcases its advantage in dynamic gesture recognition.
Among all the algorithms, SSBoW performed the worst in all action recognitions; this is
because each frame from the input video could not be clearly classified to the correct type
by SSBoW, which led to an overall low recognition rate. Frame-to-frame recognition results
are presented in Figures 14 and 15. In an action unit, the proposed algorithm considerably
outperformed other approaches with the highest accuracy, while SSBoW produced the
lowest results. Figures 14 and 15 explain why SSBoW could not produce good accuracy in
each action.

Figure 14. Accuracy of frames recognition in an action unit on Assembly Gesture Video Dataset.
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Figure 15. Accuracy of frames recognition in an action unit on HoloLens ARAAT dataset.

To evaluate the performance of the proposed algorithm, we also conducted boundary
segmentation experiments on the HoloLens ARAAT dataset. We labeled the ground
truth boundary segmentation of the videos in advance. Because the action “Null” is the
meaningless transition action, we excluded it from the ground truth. We developed a
measure to evaluate the segmentation accuracy (SA), expressed as:

SA =

∣∣∣Fresult ∩ Fgroundtruth

∣∣∣
Fgroundtruth

(21)

where Fresult denotes the frames of the segmentation result and Fgroundtruth denotes the
segmentation frames of the ground truth. Figure 16 demonstrates the accuracy of each
action’s segmentation on the HoloLens ARAAT dataset. DFW provided the best recognition
results compared to SSBoW, DSBoW, and DTBoW. However, it is outperformed by the
proposed algorithm. This is because DFW is incapable of segmenting each action explicitly,
so incorrectly segmented frames will interfere with its recognition accuracy. Through the
optimal boundary search, the proposed algorithm can precisely divide each action from
a long input video. The segmentation results also prove why the proposed algorithm
outperforms the other approaches in action recognition accuracy.

Figure 16. Accuracy of action boundary segmentation on HoloLens ARAAT dataset.
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Figure 17 presents the accuracy of different resolutions to further support the effective-
ness of the proposed algorithm. When the resolutions were over 160 × 120, the accuracies
were over 90%. However, the accuracy was under 90% for 80 × 60 and only 64% for 40 × 30.
Although the accuracy was low in some low resolutions, the proposed algorithm is still reliable
in most situations because these low-resolution inputs are rarely used in current applications.

Figure 17. Effect of image resolution on accuracy.

4.3. Result of Operation Recognition and Prediction

In the ARAAT system, the action sequence is important for the evaluation of the
standard and achievement of trainees’ operations. Thus, recognition and prediction of the
operation is as necessary as action recognition.

To validate the reliability of the proposed algorithm, 30 participants took part in
performing real-time ARAAT tasks. Half of the participants were beginners in assembly
operations and the other half had basic assembly operation knowledge but little practi-
cal experience. Participants completed assembly training tasks from an application on
HoloLens written in C#. The demonstration scenario is shown in Figure 18. Participants
could assemble workpieces in the tasks in an arbitrary order depending on their own needs.
During assembly, participants chose whether to use their bare hands or various virtual tools,
such as a wrench or screwdriver, to complete the tasks, as illustrated in Figure 18. The tasks
were mainly completed by 6 actions: “Pointing”, “Moving”, “Grasping”, “Releasing”,
“Scaling”, and “Rotating”, and 3 operations: “Inserting”, “Fastening”, and “Equipping”.

Figure 18. The experimental scenario of augmented reality assisted assembly training. (a) Experi-
mental scenario, (b) screwing operation, (c) inserting operation, (d) fastening operation.
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To evaluate the sequence recognition accuracy and prediction efficiency, we developed
two measures: the sequence accuracy ( Asequence) and the degree of early recognition (DER),
defined respectively as the following:

Asequence =
∑N

i=1

(
∑M

j=1 E
(

Ãi,j = Ai,j

))
N ×M

(22)

DER =
Nre

Ntotal
(23)

where Ãi,j is the ground truth of Ai,j and E
(

Ãi,j = Ai,j

)
means if Ãi,j = Ai,j is true,

the output is 1 while 0 otherwise. Nre is the number of frames of the recognized operation
and Ntotal is the total number of frames of the whole operation. A lower DER means that the
operations are recognized early and a higher DER means that the operations are recognized
late. The experiment results shown in Table 7 indicate that the proposed algorithm can
predict the operations up to 40% of the time with a high recognition rate of 93.5%. These
results mean that the prediction can give the machine enough time to make a reaction and
provide the trainees with a smooth and friendly human-machine interaction in ARAAT.

Table 7. The recognition accuracy of Augmented Reality assisted assembly training operations.

Operation Inserting (%) Fastening (%) Screwing (%) Average (%)

Asequence 94.1 ± 1.1 93.0 ± 1.3 93.1 ± 1.0 93.5 ± 2.4
DER 40.3 ± 2.1 23.4 ± 2.5 33.7 ± 2.8 32.5 ± 4.2

5. Conclusions

ARAAT is an effective and affordable technique for labor training in the automobile
and electronic industry. In this paper, we developed an ARAAT system to transform the
complicated ARAAT task evaluation into a problem of gesture recognition and proposed a
gesture recognition and prediction algorithm. We built a complicated ARAAT task model
where a task is decomposed into a series of hand operations and each hand operation is
further decomposed into several continuous actions corresponding to gestures. We defined
five typical tasks, three typical operations, and six standard actions based on the practical
assembly works, defined an action unit to reduce the dimensions of features during the
recognition, and defined a score probability density distribution iteratively to optimize
gesture boundaries to reduce interference from invalid gestures. Furthermore, we simulta-
neously extracted 2D static and 3D dynamic features of standard gestures to improve the
gesture recognition precision and proposed an action and operation prediction method for
a short response delay time and a natural interaction. The proposed algorithm was evalu-
ated on two public datasets and two homemade assembly datasets, and achieved a high
recognition rate of 93.5% up to 40% of the time. The experimental results showed that the
proposed algorithm can increase recognition accuracy and reduce the computational cost,
which help to ensure reliability in the ARAAT task evaluation and improve the experience
of human-machine interaction. Although the procedures of ARAAT are relatively static
and predictable, it remains a challenge to handle the different assembly difficulties, various
products, and rapid updating of assembly skills. Therefore, in future, we will pay more
attention to the research of assembly operations which is adapted to different assembly
difficulties and various products, and try to build a new ARAAT system which can provide
guidelines to trainees on updated assembly skills.
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